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Abstract

Generally speaking, airline passengers can start booking tickets around 30 days before the

plane takes off. However, due to other external factors, some passengers who have booked

tickets cannot board the plane, thus causing the phenomenon of empty seats on the plane

and wasting resources. To maximize the benefits, airlines adopt an overbooking strategy, but

it also brings other risks.

Based on passenger behavior, fluctuation rules of ticket prices before takeoff, and relevant

policies of airlines to deal with no-show passengers and other emergencies, this paper

establishes a dynamic model for aircraft overbooking decision and puts forward reasonable

suggestions for the sales tickets of each day based on the fitted number of tickets and plane

price per day.

Considering the COVID-19 epidemic, we further adjust the original dynamic model based

on the actual situation and establish a new model for COVID-19 aircraft overselling decisions,

aiming to provide more reasonable overselling suggestions for airlines under the influence

of COVID-19. Using Analytic Hierarchy Process (AHP) and basic SIR model, we quantify

the heightened security and passengers’ fear and connect them with passengers’ no-show

probability. Through numerical verification, the dynamic model can increase the profit of

airlines by 11% under normal conditions but not significantly increase the profit of airlines

under the influence of COVID-19 as ticket orders are less than actual capacity. Thus smaller

planes could be applied to increase the rate of loading and dynamic model works well. Overall,

our dynamic model is of great significance to reduce airline losses and give rise to overall

profit.



Chapter 1

Introduction

1.1 BACKGROUND INFORMATION

No-show & Denied Boarding Cases

The tactic rule of an airline reservation is that, passengers can book tickets via the ticket

office or the airline more than ten days before the departure time of the plane. Due to

the relatively long period from the departure time, as well as the uncertainty of passenger

behavior under complicated situations, often the airline will sell more tickets than the actual

seats to avoid potential loss of benefit, namely overbooking.

In the ticket booking decision, airline companies generally face two risks: the risk of

empty seats due to the booked passengers’ not showing up and the risk of overbooking due

to the overselling method adopted by airline companies, and both of them will bring the

loss of benefit. Taking the passenger capacity of flights as the critical point: if the number

of passengers who arrive at the airport with reserved seats is less than the flight capacity,

there will be seat surplus, which is the risk of empty seats; contrarily, if the number of arrived

passengers is more than the flight capacity due to the overselling method, some passengers

will be denied to board the plane, thus causing the risk of companies’ unnecessary reparations

4
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and further damage to reputation. Generally saying, a reasonable overselling method can

reduce the loss of seats and assist in boosting total profit with relatively slight influences

on corresponding risks, but combining various kinds of uncertainty, it is very difficult to

determine the reasonable overselling amount.

Overbooking plays one of the significant rules in revenue management for airline compa-

nies, which is always coming along with two major issues, which we have stated previously:

No-Show problem (the reserved passengers do not show up, leading to empty seats as a waste

of resources), and Denied-Boarding (DB) problem (the number of arrived passengers is larger

than airline capacity due to the ticket-overselling method, leading to reparation and credit

risk).

Considering real practices, airlines often have no-show passengers, creating some empty

seats while some passengers demand tickets on-site (also called Co-Show) but cannot manage

the trade since the tickets are literally sold out.

According to the analysis of historical sales and departure data, the No-Show rate of

passengers can be predicted, and thus the oversold rate can be determined for air ticket

sales. Through possible predictions, we can not only make the most of the seats available on

hot-line flights, increasing airline revenues together with efficiency, but also make it possible

for other Co-show travelers to fulfill the requirement, which creates a win-win situation. For

instance, Lufthansa does an excellent job of overbooking, generating 5% more revenue per

year.

Notice that the overselling forecast cannot be accurately generated, the so-called DB

(Denied) entry problem occurs. This causes dissatisfaction with passengers and even con-

flicts between airlines and passengers. In unusual, airline companies take the approach of

compensating DB passengers while such compensation is often more than twice the ticket

price. In the event of DB, the cost of airline companies rises rapidly, which is also what they

are not willing to see.
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Therefore, overselling is a double-edged sword. How to solve the contradiction between

the No-Show rate and DB has always been an issue of great concern to airlines and academic

circles.

By far, the over-booking method of the airlines in China has been static. That is to say, the

number of oversells remains the same from the open date until the departure date for a flight

according to government regulation. That ignores many factors, such as the fluctuation of

ticket prices, the difference between Business Class and Economic Class, and so on. That

leads the airline companies far away from the best-selling strategy.

In the process of selling tickets, the airline’s reservation system accepts the passengers’

requirements for both the booking of a ticket and the cancellation or rescheduling of another

flight. Tickets should be booked much faster than the cancellation rate, and at some point,

before the plane takes off, it will reach or approach the capacity of the plane, at which point

the airline will face the overbooking problem. Airlines can control the volume of tickets

booked and will no longer accept requests for tickets when the number of booked tickets

exceeds the desired number. However, due to the uncertainty of booking demand, the current

rejected demand will no longer appear in the future, and the future cancellation will continue

to occur, then there will be empty seats when the plane takes off, resulting in the decline of

flight revenue.

Therefore, the overbooking of airline tickets is a dynamic decision-making process. This

process depends on the current sales status, future demand distribution, ticket cancellation

distribution, and no-show rate at takeoff.

The Overview of Airline Transportation under COVID-19

The outbreak of COVID-19 in Wuhan began in mid-December 2019, and by February 3,

2020, the number of infected people had reached 17,238 (according to the unified national

epidemic report data), among which there were 21,558 suspected cases. According to the
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confirmation rate of around 50%, the infected people should exceed 25,000. In the 7 months

of SARS in 2003, the number of infected people in the world was only about 8,100, and the

number of infected people in Wuhan was 2-3 times higher than that in the period of SARS in

2003, which was far more infectious and influential than THE SARS virus.

Here are major negative influences that COVID-19 has brought to the airline transporta-

tion system in China[1].

• Less available flights and more cancellation:

On January 25, the China Travel Association issued an announcement that "all group

tours of travel agencies across the country will be suspended". As a result, from January

24th to 31st, some or all flights involving Wuhan and Hubei provinces began to be

canceled. From February 1, China’s foreign airlines began to cancel a large number of

flights to China, and from February 1, China’s airlines began to cancel a large number of

remaining domestic flights. Flight cancellations will have a huge impact on the second

half of the Spring Festival travel rush, which runs from Jan 24th to Feb 18th.

• Significant decrease in passenger traffic:

In the face of widespread flight cancellations that began on 24 January, passenger traffic

has been greatly affected, particularly since 1 February. As of February 1, a total of 34.36

million passenger trips had been made during the Spring Festival travel rush, down 17.1

percent year on year, according to the civil Aviation Resources Network. Among them,

the passenger transport volume on February 1 was only 470,000, a sharp decrease of

76.4% year on year, and the one-day passenger load factor of all civil aviation was only

43.58%, setting a new low since the Spring Festival travel rush.

• The utilization rate of aircraft of each airline has decreased significantly:

The Spring Festival travel rush has always been the most critical 40 days for airlines

to consolidate the business performance in the first half of the year. Airlines will also
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try to increase the aircraft utilization rate during the Spring Festival travel rush to the

maximum flight hour that the company’s flight crew can execute. During the Spring Fes-

tival travel rush, the department of Small and medium-sized airlines, taking advantage

of the overtime policies of the General Administration and regional administrations,

began to increase flights on busy routes during the Spring Festival travel rush. Basically,

the target of aircraft utilization required by the Department of small and medium-sized

airlines would be more than 11 hours. According to the actual situation of an airline

company, from January 10 to 23, the utilization rate of the aircraft reached more than

11 hours, which was reduced to about 9 hours after the shift reduction on January 24,

and less than 5 hours after the significant shift reduction on February 1. A sharp decline

in utilization would lead to a sharp rise in unit costs, which would increase the variable

costs of the remaining flights and lead to negative flight edges.

• Passenger load factor decreased significantly, especially for international flights [2]:

On the evening of 30 January, WHO announced that the Novel Coronavirus outbreak

had been listed as a public health emergency of international concern. Since January

31, Italy, the United States, Australia, New Zealand, Singapore, and other countries have

started to cancel flights to China on a large scale, and more than 70 countries have

suspended the entry of Chinese citizens or imposed corresponding restrictions.

Originally, the department of Domestic Aviation relied heavily on travel groups for

its international flights. Now, it is prohibited to organize travel groups to receive

the documents of the National Tourism Administration with no termination date.

Combined with the double impact of international restrictions on Chinese citizens

entering the country, international flights carried out by domestic companies have

been largely canceled since February 1 and will be completely canceled by the end of

February. Less than 50% of the remaining flights of each airline company are in flight.

As the movement of people is almost banned across the country, the willingness of
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passengers to travel is greatly reduced and reaches the freezing point. In addition, the

Civil Aviation Administration has made it clear that a full refund of tickets must be

made after 24 days, passengers who have booked tickets in advance cancel their trips,

and no new passengers have been booked later. As a result, the passenger load factor

of the remaining flights will not reach 50%.

1.1.1 Research Purpose & Significance

In this paper, we try to build a dynamic model for airline companies’ overbooking de-

cisions. That is, according to the simulated number of tickets booking every day and the

expectation of the total number of tickets booking in the future, we use MATLAB as the major

tool to simulate the possible permutation and combination of multiple inducts. By com-

paring all the results we get from different combinations, we can obtain the suggested sales

tickets for the day, improve the profit of airlines, and reduce the risk brought by overbooking

decisions.

Meanwhile, we are considering the specialty of the current situation according to the

given four external factors brought by Covid-19. Through the establishment of a new simple

SIR epidemic model, considering the above factors for the effects of parameters and variables,

to further improve the model, and under the influence of the outbreak of the new champions

league for more than an outbreak of airlines in different stages to take overbooked policy rec-

ommendations. This provides a reference for airlines severely affected by Covid-19 to adjust

their decisions in real-time to reduce losses or increase profits. It is of certain reference value

to the airline ticket sales and the decision of the relevant government when encountering

similar epidemic impacts or other irresistible factors in the future.
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1.2 PROBLEM RESTATEMENT

Problem A: Airline Overbooking

Historically, airlines know that only a certain percentage of passengers who have made

reservations on a particular flight will actually take that flight. Especially, now due to the

Covid-19, a lot of passengers would like to get the tickets as earlier as possible in order to

come back to hometown. However, they need canceled the fight due to some safety concern,

physical condition or some other isolation policies. Consequently, most airlines overbook-

that is, they take more reservations than the capacity of the aircraft. Occasionally, more

passengers will want to take a flight than the capacity of the plane leading to one or more

passengers being bumped and thus unable to take the flight for which they had reservations.

Airlines deal with bumped passengers in various ways. Some are given nothing, some

are booked on later flights on other airlines, and some are given some kind of cash or airline

ticket incentive. Consider the overbooking issue in light of the current situation:

• Less flights by airlines from point A to point B

• Heightened security at and around airports

• Passengers’ fear

• Loss of billions of dollars in revenue by airlines to date

Build a mathematical model that examines the effects that different overbooking schemes

have on the revenue received by an airline company in order to find an optimal overbooking

strategy, i.e., the number of people by which an airline should overbook a particular flight so

that the company’s revenue is maximized. Insure that your model reflects the issues above,

and consider alternatives for handling ”bumped” passengers.
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1.2.1 Problem Analysis

Fundamentally, we build a dynamic overbooking model to determine the overbooking

amount on each day in the whole pre-sale period to maximize the revenue. Considering

the price fluctuation, we apply Monte Carlo simulation to predict prices on each day using

historical statistical data. Further, by the basic demand principle in economy, we construct

the relation between prices and actual selling tickets amount by a fraction function for both

economy and business classes.

In the COVID-19 setting, we adjust our model in the following detailed ways:

For the first criteria, when there are flights from point A to point B, since we only consider

a single flight at one time between two destinations in our model, less flights could be

considered as less capacity of a single flight on average given the total number of flights

unchanged. Thus we may adjust c and cs to be smaller.

For the second and third ones, heightened security and passengers’ fear would make

people with ordered tickets more reluctant to be on board in time. That implies that the

probability for passengers to be no-show in both economy and business classes would be

larger than before in our context. Thus here we introduce AHP model to quantify the relation

between no-show probability and passengers’ fear, heightened security factor.

When huge deficit is expected to happen, airline companies would tend to sell more

tickets in the pre-sale period with the possibility that more bumped passengers would occur

to increase the loading rate. That means the maximum overbooking rate should be larger in

our model to allow more overbooking.

1.2.2 Assumptions & Notations

• Whether or not passengers arrive on time is independent of each other (this applies to

businessmen and tourists acting alone);Each passenger decides independently to have

travel demands, order the ticket and board a plane in time. In other words, traveling in
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groups is not considered in this model.

• The revenue considered in our model is for a single flight from point A to point B and

the total revenue for the whole company is just the sum of all of such flights.

• Air fares fluctuate regularly over time, and the closer the departure time is, the higher

the fare is.

• For each flight, the company sells more tickets than its actual capacity of loading and is

willing to take the risk of passengers’ no-show and denied boarding conditions.

• Each flight has two classes: Business Class (BC) and Economy Class (EC): The BC

passengers have the willing to pay higher but has lower probability to show up; the EC

passengers pay lower prices and have higher possibility to show up. BC passengers can

get more reparations than EC passengers when not show up.

• When economy class is full, the extra passengers will automatically accept the compen-

sation plan of upgrading to Business Class by default; Extra passengers after upgrading

will then automatically accept the over-repayment solution.

• In the application of the infectious disease model, we assume that Beijing and Shanghai

conform to the basic premise of the SIR model:

1. The total population does not have fluctuation, such as birth, death, and mobility,

which are not considered, namely N (t ) = K .

2. Once a patient comes into contact with susceptible persons, he must have certain

infectivity. Suppose at time t , the number of susceptibles that a patient can infect is

directly proportional to the total number of susceptibles s(t ) in the environment, and

the proportionality coefficient is, thus the number of susceptibles that all patients can

infect per unit time at time t is βs(t )i (t ).
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3. At time t , the number of patients removed from infected persons per unit time is

proportional to the number of patients, with the proportionality coefficient of and the

number of patients removed per unit time being αi (t ).



14

Table 1.1: Notations

Notation Significance

t day index
T total pre-sale period
c maximum capacity of a flight in economy class
n number of tickets sold already in [0, t ) for economy class
φ expected number of tickets to be sold on day t for economy class
k∗ expected ticket demand amount in [t +1,T ] for economy class
k expected number of tickets to be sold in [t +1,T ] for economy class
ft ticket price on day t of economy class
s revenue for economy class in [t +1,T ]
i number of no-show passengers in economy class

pN probability for a passenger to be no-show in economy class
fN no-show refund loss for each passenger in economy class
fN ′ no-show preparation loss for each passenger in economy class
λN no-show refund loss rate in economy class
λN ′ no-show preparation loss rate in economy class
sk

N refund loss caused by no-show passengers on day t in economy class
sk

N ′ preparation loss caused by no-show passengers on day t in economy class
sN total loss caused by no-show passengers in economy class
fD bumped compensation for each passenger in economy class
λD bumped compensation rate in economy class
sk

D loss caused by bumped passengers on day t in economy class
sD total loss caused by bumped passengers in economy class
Fk total revenue in economy class on day t
cs maximum capacity of a flight in business class
ns number of tickets sold already in [0, t ) for business class
φs expected number of tickets to be sold on day t for business class
k∗

s expected ticket demand amount in [t +1,T ] for business class
ks expected number of tickets to be sold in [t +1,T ] for business class
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Table 1.2: Notation

Notation Significance

fts ticket price on day t of business class
ss revenue for business class in [t +1,T ]
is number of no-show passengers in business class

pNs probability for a passenger to be no-show in business class
fNs no-show refund for each passenger in business class
fN ′

s
no-show preparation loss for each passenger in business class

λNs no-show refund rate in business class
λN ′

s
no-show preparation loss rate in business class

sks
Ns

loss caused by no-show passengers on day t in business class

sks

N ′
s

preparation loss caused by no-show passengers on day t in business class

sNs total loss caused by no-show passengers in business class
fDs bumped compensation for each passenger in business class
λDs bumped compensation rate in business class

sks
Ds

loss caused by bumped passengers on day t in business class
sDs total loss caused by bumped passengers in business class
Fks total revenue in business class on day t
F total revenue for the company

HS heightened security factor
PF passengers’ fear factor



Chapter 2

Literature Review

2.1 RESEARCH STATUS OF OVERBOOKING CONTROL [7]

The first overbooking model was proposed by Beckmann, from Tasman Empire airline.

The model he proposed used gamma distribution to explain the volume of passengers, and

established a mathematical model with the lowest empty seat economic loss and oversold

cost, and set a fixed overbooking for each flight. However, the model was not practical

because it required the estimation of overbooking cost and passenger demand, and the

probability distribution of cancellation of reservation by the reserved passengers [8].

But then, Thompson, who was also from Tasman Empire airlines, proposed a more

practical model by completely ignoring the probability distribution of passenger demand

and overbooking cost. The model only required a fixed cancellation rate at random, and

proposed two important assumptions about the probability of cancellation of a reservation

request by a reserved passenger, that is, the probability of a certain reservation cancellation

is neither based on whether the passenger belongs to a certain group nor the length of the

reservation [9].

Rothstein first introduced the dynamic programming model in the study of hotel revenue

management. This model was also applied to solve the problem of airline ticket overbooking

16
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[10-12]. In the 1980s, the research methods of airline ticket overbooking were mostly dynamic

methods. Alsaup, a member of SAS (Scandinavian Airlines systems), studied the problem of

two-level overbooking through dynamic programming method. Based on the principle of

stochastic dynamic programming, P. Zouein and W. Abillama studied the problem of multi

flight ticket overbooking. Furthermore, based on the assumption that the passenger demand

obeys Poisson distribution, Youyi Feng and Baichun Xiao established a time continuous

model and proved the existence of the optimal upper limit of overbooking [13].

In order to consider the impact of airline risk preference on ticket overbooking decision,

Jingguang Chen and his team used CVaR (Conditional Value at Risk) to study overbooking

decision under different risk tolerance levels [14-16]. Recently, Haotian Zhao and his team

carried out relevant research on overbooking decision under different risk tolerance levels by

using robust optimization method [17].

2.2 RESEARCH STATUS OF CABIN CONTROL [7]

If the random probability distribution of passenger demand does not change, the static

cabin control strategy is the optimal decision under the assumption of passenger arrival

sequence. However, the probability distribution of passenger demand is uncertain. Therefore,

during the whole ticket sales period, airlines constantly update the demand and capacity in-

formation, and repeatedly apply static cabin control method is a more conventional method.

The research on the optimization of cabin control shows that if some assumptions in

the static research method are relaxed, there will be no optimal decision for static cabin

control. Therefore, many scholars use dynamic cabin control to deal with the problems

encountered in single segment. Different from static cabin control, the decision-making

scheme of dynamic cabin control is not to determine the number of reservation control at

the beginning of ticket sales, but to refuse or accept the arrival booking request in real time in

the process of absorbing real-time information such as ticket sales and booking requests.
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For example, Lee and Hersh regarded the demand of each class of cabin as a non-

homogeneous Poisson process, and apply Markov decision-making model to formulate

the strategy, that is, to specify the time t . The booking request before t will not affect the strat-

egy at this moment, except for the insufficient transportation capacity. Using discrete-time

stochastic process, they proposed a dynamic cabin control problem of single segment [18].

In 2000, Van Slyke and Young, based on Lee and Hersh’s model, obtained time continuous

optimization results [19], simplified the model to a more specific single segment cabin

control problem, and extended it to the non-homogeneous arrival process. The model also

recognized the batch arrival of passengers.

2.3 RESEARCH STATUS OF PRICING MODEL [7]

The research focus of airline pricing is from two aspects: one is from the perspective of

economics, with the help of relevant theories to analyze the pricing methods and strategies

that airlines should adopt, that is to carry out normative qualitative research (theorem driven);

the other is to carry out empirical quantitative research by building mathematical models

and using real or simulated data (data driven).

As for the effectiveness of revenue management pricing method, Theodore C. Botimer

analyzed the efficiency of economics as a foothold. He pointed out that the specified dif-

ferential pricing system can ensure that passengers can purchase air tickets according to

the maximum willingness to spend when supply exceeds demand, so as to optimize the

allocation of seats and maximize the income of society and airlines [20].



Chapter 3

The Establishment of dynamic

overbooking model

3.1 THE CONSTRUCTION OF MODEL

The basic idea for this model is to divide the whole pre-sale period into discrete daily

time points. For each day t , we look back to the starting selling day for the total number of

tickets sold n in the period [0, t ), look forward till the end of the sale period T to predicting

the expected selling tickets demand k∗ in [t +1,T ] and estimate current overbooking amount

φ [21].

Also, for each flight, we have two classes—-economy class and business class. First, we

consider the economy class case.

Suppose that the number of people with the demand of booking plane tickets follows the

Poisson distribution, which gives

P (X = k∗) = λk∗

k∗!
e−λ (3.1)

where λ is the coefficient in Poisson process.

19
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Also, we can derive the incremental distribution law of Poisson process, which is

Pk∗(t0, t ) = P (X (t )−X (t0) = k∗)

= [λ(t − t0)]k∗

k∗!
e−λ(t−t0)

(3.2)

Therefore, in the future period [t +1,T ], the probability for selling k∗ tickets is

Pk∗(t +1,T ) = [λ(T − (t +1))]k∗

k∗!
e−λ(T−(t+1)) (3.3)

In the business class, we can just derive the similar results:

Pk∗
s

(t +1,T ) = [λs(T − (t +1))]k∗
s

k∗
s !

e−λs (T−(t+1)) (3.4)

3.1.1 The prediction of flight ticket price for each day

For each day, the flight ticket prices can be different. Using statistical data, we can

generate a Monte Carlo simulation and determine the economy class ticket price ft for each

day. To be more precise, we divide the prices into multiple price intervals and obtain the

accumulated probability for each interval by statistical data. For each day in the pre-sale

period, generate a random number between 0 and 1 and rearrange the number array from

small to large as they are close to the depart time. For business class ticket price fts , the result

is similar.

3.1.2 The estimation of actual tickets selling amount

Note that with the influence of flight ticket price fluctuations, the actual number k of

people who would order tickets can vary. Thus we introduce a probability function ε to show

the relation between the ticket price and the fraction of people who will order the tickets
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among people in demand. In economy class, it is

k = ε( ft )k∗ (3.5)

By the basic supply-demand model developed in economy, the market demand would

decrease as the price of commodity increases [22]. In the airline context, that means the

fraction of people who would order tickets is infuenced by ticket prices. There are two basic

functions to express the negative correlation: one is inverse proportional function while

the other is linear function. Since in the low-price range, there are consumers hesitating

for the choices between other transportation ways like trains and they are more sensitive

about prices, we apply the inverse proportional function to describe the relation. While in

high-price range, consumers tend to choose flights as their first choice and their decisions

are less sensitive regarding prices, thus we apply the linear function with negative slope to

describe.

ε( ft ) =


a

ft
ft ∈ (0,B)

b ft + c ft ∈ [B , M ]

(3.6)

where B represents the balance point where two types of consumer’s behaviors are separated

and M denotes the maximum price the consumer can accept.

In business class, though ticket order amounts would be influenced by the price, the

customers are much less sensitive about the price change. Thus we just introduce a simple

linear function with negative slope to describe the relation:

εs( fts ) = d fts +e (3.7)
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Note that the actual ordering amount k follows the Poisson distribution as well since

Pk (t +1,T ) = P ([X (T )−X (t +1)]ε( ft ) = k)

= P (X (T )−X (t +1) = k

ε( ft )
)

= [λ(T − (t +1))]
k

ε( ft )

( k
ε( ft ) )!

e−λ(T−(t+1))

(3.8)

Also for business class:

Pks (t +1,T ) = [λs(T − (t +1))]
ks

εs ( fts )

( ks
εs ( fts ) )!

e−λs (T−(t+1)) (3.9)

3.1.3 The dynamic model for overbooking limit [21]

Thus on the day t , the revenue estimated for economy class in [t +1,T ] is

s = k ft (3.10)

Note that the future ticket prices are estimated by price on current day.

Besides, as the revenue changes with the number of people ordering tickets, it is suggested

that the revenue also follows the Poisson distribution as shown below

Ps(t +1,T ) = P ([X (T )−X (t +1)] ft = s)

= P (X (T )−X (t +1) = s

ft
)

= [λ(T − (t +1))]
s

ft ε( ft )

( s
ft ε( ft ) )!

e−λ(T−(t+1))

(3.11)
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Therefore, in the period [t +1,T ], the expected revenue is

E(s) =
∞∑

s=0
sPs(t +1,T )

=
∞∑

s=0
s

[λ(T − (t +1))]
s

ft ε( ft )

( s
ft ε( ft ) )!

e−λ(T−(t+1))

= ftε( ft )
∞∑

k∗=0
k∗ [λ(T − (t +1))]k∗

k∗!
e−λ(T−(t+1))

= ftε( ft )E(k∗)

= ftε( ft )λ [T − (t +1)]

(3.12)

as k follows the incremental Poisson process as shown above.

As for business class, we omit the analogous argument and just give the result here:

E(ss) = ftsε( fts )λs [T − (t +1)] (3.13)

For people who have already ordered the tickets successfully, they have two choices:

on board in time and no-show (refund the tickets and decide not to take the flight). Thus

suppose the probability of a passenger with a ticket to be no-show is pN . Note that in our

model we do not consider the case that passengers travel in group. Thus in the period [0, t )

when there are n people ordering the tickets successfully, the distribution of no-show people

in economy class is

Pi (n) =
(

n

i

)
p i

N (1−pN )n−i (3.14)

where i is the number of no-show people.

At this stage we can have a brief summary here, as indicated at the beginning of this

section, we’ve determined the number of no-show people in [0, t ), the number of expected

selling tickets in [t +1,T ] and their distributions. We can also determine the overbooking

amount φ on day t .
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Also, the total number of no-show passengers should be computed by all selling tickets,

which are the sum of tickets sold n, expected selling tickets k and estimated overbooking

amount φ.

Note that as the appearance of no-show people is independent of the appearance of

selling tickets in the future, we actually have the joint distribution in our model when number

of no-show people is j and the number of future selling tickets is k.

P (X = j ,Y = k) = P j (n)Pk (t +1,T )

=
(

n +φ+k

j

)
p j

N (1−pN )n+φ+k− j [λ(T − (t +1))]
k

ε( ft )

( k
ε( ft ) )!

e−λ(T−(t+1))
(3.15)

Now we can estimate the expected loss caused by no-show passengers and bumped

passengers. First, consider the no-show case:

Basically the airline companies are faced with two types of losses for no-show passengers:

(1) Refund for returning tickets

(2) Stuff prepared in advanced for passengers like meals

For customers in economy class, the refund is the product of price and refund rate λN ,

which is

fN = ftλN (3.16)

Thus we can obtain the refund loss caused by no-show people when there are k tickets to be

sold in [t +1,T ]:

sk
N = i ft (3.17)

The second kind of loss could be computed by the similar method:

fN ′ = ftλN ′ (3.18)

where λN ′ is the loss rate for the second type loss.
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The loss caused by stuff prepared in advance is given by

sk
N ′ =


[
i − (n +φ+k − c)

]
fN ′ i > n +φ+k − c

0 i ≤ n +φ+k − c
(3.19)

as no such loss is caused when the number of no-show passengers is less than the overbooking

number. Additionally, losses sN and sN ′ follow binomial distribution when they are nonzero

as no-show passenger number follows the binomial distribution.

Further, we could get the expected loss E(sN ) and E(sN ′) when there are k selling tickets

in [t +1,T ]:

E(sk
N ) =∑

sk
N Pi (n)

=
n+φ+k∑

i=0
i fN

(
n +φ+k

i

)
p i

N (1−pN )n+φ+k−i
(3.20)

E(sk
N ′) =

∑
sk

N ′Pi (n)

=
n+φ+k∑

i=n+φ+k−c+1

[
i − (n +φ+k − c)

]
fN

(
n +φ+k

i

)
p i

N (1−pN )n+φ+k−i
(3.21)

Similarly, the argument is applied to business class as well, and thus the expected loss in

business class is:

E(sks
Ns

) =∑
sks

Ns
Pi (ns)

=
ns+φs+ks∑

is=0
i fNs

(
ns +φs +ks

is

)
p is

Ns
(1−pNs )ns+φs+ks−is

(3.22)

E(sks

N ′
s
) =

ns+φs+ks∑
is=ns+φs+ks−cs+1

[
is − (ns +φs +ks − cs)

]
fNs

(
ns +φs +ks

is

)
p is

Ns
(1−pNs )ns+φs+ks−is

(3.23)

Then we derive the results corresponding to bumped passengers.

We may analyze passengers in business class first as it is easier. To compensate business
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class passengers, the loss value should be

fDs = (1+λDs ) fts (3.24)

It is obvious that only when the number of no-show passengers is less than the overbook-

ing amount, there would be ’bumped’ loss for the company. That is

sk
Ds

=


0 is > ns +φs +ks − cs

(ns +φs +ks − cs − is) fDs is ≤ ns +φs +ks − cs

(3.25)

Note that sk
Ds

follows binomial distribution as well for the number of no-show people

follows the binomial distribution, and thus the expected loss in bumped case is

E(sk
Ds

) =∑
sk

Ds
Pis (ns)

=
ns+φs+ks−cs∑

is=0

[
ns +φs +ks − cs − is

]
fDs

(
ns +φs +ks

is

)
p is

Ns
(1−pNs )ns+φs+ks−is

(3.26)

However, for bumped passengers in economy class, there are two options for them:

(1) Upgrade to business class when it has available seats.

(2) Receive compensation fD

In the first option, there would be no loss for the company while for the second one, the

loss value should be

fD = (1+λD ) ft (3.27)
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Similarly, the total loss should be

sk
D =


0 i > n +φ+k − c

(n +φ+k − c − i − (is − (ns +φs +ks − cs))) fD i ≤ n +φ+k − c, is > ns +φs +ks − cs

(n +φ+k − c − i ) fD i ≤ n +φ+k − c, is ≤ ns +φs +ks − cs

(3.28)

When there are available seats in the business class:

E(sk
D ) =∑

sk
D Pi (n)

=
n+φ+k−c∑

i=0

[
n +φ+k − c − i − (is − (ns +φs +ks − cs))

]
fD

(
n +φ+k

i

)
p i

N (1−pN )n+φ+k−i

(3.29)

When the business class is full:

E(sk
D ) =∑

sk
D Pi (n)

=
n+φ+k−c∑

i=0

[
n +φ+k − c − i

]
fD

(
n +φ+k

i

)
p i

N (1−pN )n+φ+k−i
(3.30)

Therefore, in economy class, when n tickets have been already sold, φ tickets are expected

to be sold on day t and k tickets are expected to be sold in [t +1,T ], the total revenue for the

airline company should be

Fk = (n +φ+k) ft −E(sk
N )−E(sk

N ′)−E(sk
D ) (3.31)
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Observe that Fk is a function of k and so the expected revenue E(F ) is

E(F ) =
∞∑

k=0
Fk Pk (t +1,T )

=
∞∑

k=0
(n +φ+k) ft Pk (t +1,T )−

∞∑
k=0

E(sk
N )Pk (t +1,T )−

∞∑
k=0

E(sk
N ‘)Pk (t +1,T )−

∞∑
k=0

E(sk
D )Pk (t +1,T )

(3.32)

The first term on the right hand of the equation is

∞∑
k=0

(n +φ+k) ft Pk (t +1,T ) =
∞∑

k=0
(n +φ) ft Pk (t +1,T )+

∞∑
k=0

k ft Pk (t +1,T )

= (n +φ) ft

∞∑
k=0

Pk (t +1,T )+ ft

∞∑
k=0

kPk (t +1,T )

= (n +φ) ft + ft

∞∑
k=0

k
[λ(T − (t +1))]

k
ε( ft )

( k
ε( ft ) )!

e−λ(T−(t+1))

= (n +φ) ft + ftε( ft )
∞∑

k=0
k∗ [λ(T − (t +1))]k∗

(k∗)!
e−λ(T−(t+1))

= (n +φ) ft + ftε( ft )λ(T +1− t )

= (n +φ) ft +E(s)

(3.33)

In the whole pre-sale period, the total expected loss is

E(sN ) =
∞∑

k=0
E(sk

N )Pk (t +1,T )+
∞∑

k=0
E(sk

N ‘)Pk (t +1,T ) (3.34)

E(sD ) =
∞∑

k=0
E(sk

D )Pk (t +1,T ) (3.35)
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Therefore, the expected total revenue for economy class is

E(F ) =
∞∑

k=0
(n +φ+k) ft Pk (t +1,T )−

∞∑
k=0

E(sk
N )Pk (t +1,T )−

∞∑
k=0

E(sk
N ‘)Pk (t +1,T )−

∞∑
k=0

E(sk
D )Pk (t +1,T )

= (n +φ) ft +E(s)−E(sN )−E(sD )

(3.36)

Similarly, the expected total revenue for business class is given by

E(Fs) = (ns +φs) fts +E(ss)−E(sNs )−E(sDs ) (3.37)

and the total revenue for the company is

E(Ftot al ) = E(F )+E(Fs) (3.38)

Note that we cannot figure out the equation above in specific cases as there exists the sum

of k from 0 to ∞. Thus we introduce an overbooking limit which is given by

U = (1+λc )c (3.39)

where λc is the maximum overbooking rate and here we discuss the economy class first.

Thus in the period [t +1,T ], when the total selling amount exceeds the overbooking limit,

the extra orders would be denied, otherwise they would be accepted, that is

Pk =


Pk (t +1,T ) k <U − (n +φ)

1−
U−n+φ−1∑

k=0
Pk (t +1,T ) k ≥U − (n +φ)

(3.40)
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Therefore, the expected loss for no-show and bumped passengers are

E(sN ) =
∞∑

k=0
E(sk

N )Pk (t +1,T )+
∞∑

k=0
E(sk

N ′)Pk (t +1,T )

=
U−(n+φ)−1∑

k=0
E(sk

N )Pk (t +1,T )+E(sU−(n+φ)
N )PU−(n+φ)

+
U−(n+φ)−1∑

k=0
E(sk

N ′)Pk (t +1,T )+E(sU−(n+φ)
N ′ )PU−(n+φ)

=
U−(n+φ)−1∑

k=0
E(sk

N )Pk (t +1,T )+E(sU−(n+φ)
N )(1−

U−(n+φ)−1∑
k=0

Pk (t +1,T ))

+
U−(n+φ)−1∑

k=0
E(sk

N ′)Pk (t +1,T )+E(sU−(n+φ)
N ′ )(1−

U−(n+φ)−1∑
k=0

Pk (t +1,T ))

(3.41)

E(sD ) =
∞∑

k=0
E(sk

D )Pk (t +1,T )

=
U−(n+φ)−1∑

k=0
E(sk

D )Pk (t +1,T )+E(sU−(n+φ)
D )PU−(n+φ)

=
U−(n+φ)−1∑

k=0
E(sk

D )Pk (t +1,T )+E(sU−(n+φ)
D )(1−

U−(n+φ)−1∑
k=0

Pk (t +1,T ))

(3.42)

We can derive the similar results for business class, which are

E(sNs ) =
Us−(ns+φs )−1∑

ks=0
E(sks

Ns
)Pks (t +1,T )+E(sUs−(ns+φs )

Ns
)(1−

Us−(ns+φs )−1∑
ks=0

Pks (t +1,T ))

+
Us−(ns+φs )−1∑

ks=0
E(sks

N ′
s
)Pks (t +1,T )+E(sUs−(ns+φs )

N ′
s

)(1−
Us−(ns+φs )−1∑

ks=0
Pks (t +1,T ))

(3.43)

E(sDs ) =
Us−(ns+φs )−1∑

ks=0
E(sks

Ds
)Pks (t +1,T )+E(sUs−(ns+φs )

Ds
)(1−

Us−(ns+φs )−1∑
ks=0

Pks (t +1,T )) (3.44)
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3.2 METHOD ADJUSTED TO COVID-19

3.2.1 Discussion of No-Show Probability

Analytic Hierarchy Process (AHP) combines qualitative method with quantitative method.

Its central idea is to divide the weight into different levels. The weight setting of factors in

each level will directly or indirectly affect the final result. It is a model and method for making

decision for complex systems which are difficult to be fully quantified.

Based on the study of relevant literature, the total number of flights and the total num-

ber of Covid-19 infection are selected as the evaluation indicators of passenger no-show

probability; the degree of passenger fear and the heightened security around the airport are

selected as the evaluation indicators, and finally the hierarchical structure as shown in the

figure below is established.

Figure 3.1: Hierarchical Structure of AHP on No-Show

According to “Coronavirus: Airlines say flying is safe, but new study reveals potential for

superspreader disaster” (Mercurynews, 2020), it can be known that although the number of

airline flights decreases due to Coved-19, passengers are still eager to fly to their destination.

Therefore, the pairwise comparison matrix A can be written as
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A =

1 1/9

9 1


According to the "Coronavirus (COVID-19) Information" (2020) given by U.S. Transporta-

tion Security Administration and "Flights Face Delay and Cancellation Amine High Security"

(flightglobal, 2006), we can write pairwise comparison matrices B1 and B2, as followed,

B1 =

1 1/7

7 1

 , B2 =

 1 5

1/5 1



Table 3.1: The value of random consistency index RI

n 1 2 3 4 5 6 7 8 9 10 11
RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

From the pairwise comparison matrix A of the criterion layer, the weight vector w (2)
k is

calculated and the results are listed in Table 3.2,

Table 3.2: Results of the Criterion Layer

k 1
Maximum Lambda 2

Eigenvector
[
0.110 0.994

]T

Weight Vector w (2)
k (Normalized Eigenvector)

[
0.100 0.900

]T

n 2
RI (According to Table 3.1) 0

Consistency Test Passed

Similarly, from the pairwise comparison matrix Bk of the Field Layer, the weight vector

w (3)
k is calculated and the results are listed in Table 3.3.
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Table 3.3: Results of Field Layer

k 1 2
Maximum Lambda 2 2

Eigenvector
[
0.141 0.990

]T [
0.981 0.196

]T

Weight Vector w (2)
k (Normalized Eigenvector)

[
0.125 0.875

]T

n 2 2
RI (According to Table 3.1) 0 0

Consistency Test Passed Passed

Since the random consistency index RI = 0 when n = 2 (Table 3.1), it is known that both

A and Bk can pass the consistency test by C R = C I
RI < 0.1.

According to the combination weight vector of the bottom layer (s layer) to the top layer is

w (s) = w (s)w (s−1) · · ·w (3)w (2)

The final combination weight vector is listed in Table 3.4,

Table 3.4: Combination Weight Vector

k 1 2
Combination weight 0.125 0.833

0.875 0.167

Combination weight vector
[
0.763 0.237

]T

In order to ensure that the combination weight vector listed in Table 3.4 can be used as

the final decision basis, we conduct the combination consistency test. Defined by

C I (p) =
[
C I (p)

1 , · · · ,C I (p)
n

]
w (p−1)

RI (p) =
[

RI (p)
1 , · · · ,RI (p)

n

]
w (p−1)

The definition of combination consistency ratio in layer P ,
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C R(p) = C I (p)

RI (p)
, p = 3,4, · · · , s

And the combination consistency ratio definition of the lowest layer (s layer) to the first

layer,

C R∗ =
s∑

p=2
C R(p)

Since all C I are 0 (because n = 2), the combination consistency ratio, C R(p), is 0. Accord-

ing to the condition of P level passing the combination consistency test, C R(p) < 0.1, only

when C R∗ is appropriately small, the comparison judgment of level A passes the consistency

test. Therefore, the combination weight vector listed in Table 3.4 can be used as the basis for

the final decision.

Therefore, the proportions of Passengers’ Fear PF and Heightened Security HS at and

around Airports in passenger no-show probability are 0.763 and 0.237 respectively, according

to the combination weight vector listed in Table 3.4.

3.2.2 Quantification Approach

As indicated above, we can express the relation between economy class no-show proba-

bility pN and passengers’ fear PF , heightened security HS as

pN = 0.763PF +0.237HS (3.45)

The function is applied to business class as well

pNs = 0.763PF +0.237HS (3.46)
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For the passengers’ fear factor, we can connect it with actual COVID-19 situation. The idea

is, if COVID-19 epidemic situation is serious, passengers would be more concerned about

their safety of traveling by plane and the fear factor would matter more, which implies that

PF could be larger in quantity. Otherwise we would have a smaller PF .

To better describe the COVID-19 epidemic, Chen et al. applies a time-dependent SIR

model. Thus we introduce a simplified SIR model to roughly track the change of COVID-19

infectious population in different time periods and further determine the passengers’ fear in

quantity PF under different circumstances [4].

First, we discuss in detail about the SIR model. The SIR model we are familiar with is

based on the following relationships among the total number of people N , the number of

infected people I , the number of susceptible people S, the number of cured people R, and

the time T in the epidemic area:



dS

d t
=−β I S

N
d I

d t
=β

I S

N
−αI

dR

d t
=αI

(3.47)

As we’ve discussed in class, the infectious population basically has three stages:

(1) Increase slowly

(2) Increase dramatically till the turning point

(3) Decrease

Therefore, it is obvious that the shape of infectious population curve is like a "hat".

Thus we could use it to divide time periods and for each period, we could set a constant to

characterize to what extent passengers are concerned about their safety. The criteria to divide

these three intervals is:

(1) Low fear: the time intervals when the infectious population is less than p% of the

population sum of city A and city B.



36

(2) Medium fear: the time intervals when the infectious population is between p% and

q% of the population sum of city A and city B.

(3) High fear: the time intervals when the infectious population is between q% of the

population sum of city A and city B and the highest infectious population.

For low fear, we set PF = 0.1 and make PF = 0.3, 0.5, respectively for medium fear, high

fear cases.

As for heightened security HS, we basically use the time for security check to quantify this

factor. Normally passengers reach 2 or less hours before departure. Due to the impact of the

COVID-19, it would take them one or more hours to assist epidemic prevention inspection.

Thus for passengers if they spend one more hours than before, starting from 0, HF factor

would increase by 0.2 until it reaches 0.6.



Chapter 4

Application to Real Practices

4.1 DATA ANALYSIS

With the constructed model we have previously deduced, we then apply the method to

real practices, with the assistance of MATLAB 2020a.

Here we take Air China’s Flight CA1831 from Beijing to Shanghai as the main source of

data and discuss in two cases:Business Class(BC) and Economic Class(EC). By reference to

the data shown on the official website and relative calculation, we can obtain the the intensity

of Poisson is 2.38 for passengers in Business Class and 11.25 for passengers in Economy

Class.We have 30 available seats and the maximum of overselling tickets by regulation are 50

for BC, 120 available seats and the maximum of overselling tickets by regulation are 180 for EC.

Considering the real life cases, the passengers in BC has a higher probability of not-showing

up, while they can get all the money back; the passengers in EC has lower probability of

not-showing up, and they can only get 67% of the total ticket price for this action. Similarly,

the reparation for DB passengers in BC is much higher than those in EC, which we adopt the

average value here, namely 2.72 and 1.23 separately.

37
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4.1.1 Plane Pricing Method

Airlines generally adopt a reservation policy for tickets. Customers can make reservations

by phone or over the Internet, which is highly uncertain and is likely to be canceled for a

variety of reasons. In order to maximize profits, airlines need to win customers on the one

hand and reduce the loss caused by customers’ cancellation of reservation on the other

hand. To manage this, the Airline company adjusts the plane price along with time according

to market demand. Specifically, ticket price in the peak season tends to be higher than in

the off-season. Besides, prices are lower at the beginning of the sale and higher near the

departure time. Therefore, we speculated here, that the air ticket price of a plane in the same

airline would show a periodic fluctuation according to the time series, and thus, we can apply

the Fourier series first to fit the price from the beginning of ticket sale to the departure of the

plane, so as to provide a basis for the next step of profit calculation.

Take Air China’s Flight CA1831 from Beijing to Shanghai as an example. We take the

average daily price of first-class and economy class from April 2019 to February 2020 and use

the Fourier function to simulate, and the results are shown in the figure below.

The statistic values turn out to be: R-square=0.2111, DFE=249, Adj R-square=0.1699,

RMSE=381.9890, which illustrate that the periodic simulation does not fit the data well. The

Plane Price is not periodic perfectly under the influences of many complicated circumstances.

We speculate that the price of the aircraft is affected by complex factors such as holidays

and weather, which does not correspond to the cyclical fluctuations we have predicted. There-

fore, we use the Monte Carlo simulation method to calculate the corresponding probability of

air ticket prices in the past year. According to the principle that the closer the departure time

is, the higher the air ticket price is, the predicted air ticket prices are then sorted in ascending

order as the predicted prices in 30 days separately before the departure time.
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Figure 4.1: The Fourier Simulation of Plane Price

Figure 4.2: The Fourier Simulation for Busi-
ness Class

Figure 4.3: The Fourier Simulation for Econ-
omy Class
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4.1.2 Demand Curve Prediction

According to the classical Supply- Demand curve in economics, the change in price and

the change in quantity demanded are inversely proportional. Other conditions being equal,

this relationship between price and demand is called the Price-Demand curve. The demand

table and demand curve below reflect the relationship between product price and demand

quantity, that is, they vividly describe the relationship between price and demand in the

demand function. However, adding other factors into consideration such as time would

cause these conditions to change correspondingly, and the shape and position of the demand

curve will change, as will passenger demand for airlines as a whole.

We note that the demand for business class tickets does not fluctuate significantly with

the increase in ticket prices due to the large budget of business class passengers. With

reference to previous data, their demand tends to have a linear relationship with the plane

price. However, passengers in economy class, with relative low budgets, are significantly

affected by the price. Here, we according to the actual need for the inverse proportion of

supply and demand curves is improved, access to the high-speed rail tickets from Beijing to

Shanghai is about 400 yuan, so we are in 400 as a turning point, in 400 after the curve into a

linear function, in the highest acceptable price economy class passengers (here we forecast

of economy history highest) fellowship with x weeks. By referring to the relevant values and

making an estimate, we can get the function of the ticket change of the ticket demand of

business class passengers and economy class passengers respectively, so as to simulate the

actual number of ticket buyers per day based on the ticket prices we have predicted in the

previous step.

4.1.3 Daily Sales of Tickets

As discussed in the previous section, the passengers with daily booking requirements are

in line with the Poisson distribution. Therefore, the Poisson distribution is used to simulate
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Figure 4.4: Prediction Probability for Busi-
ness Class

Figure 4.5: Prediction Probability for Eco-
nomic Class

the number of passengers with booking requirements each day in the 30 days before the

plane takes off, and then the obtained result is multiplied by the booking probability of the

previous simulation respectively to obtain the actual number of passengers per day.

Figure 4.6: Prediction Probability for Busi-
ness Class

Figure 4.7: Prediction Probability for Eco-
nomic Class

Similarly, it was discussed in the previous chapter that the no-show probability of each

passenger booking conforms to the quadratic term distribution.Therefore, we can make profit

estimates for any day in the 30 days based on the daily number of tickets fitted, and determine

the best expected sales tickets for that day by selecting the most profitable combination

among all possible results.If the actual number of sold tickets is less than the best-predicted

number of sold tickets , we shall accept all tickets; If the actual number of sold tickets is

greater than the best-predicted number of sold tickets, we choose to reject the extra orders
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that exceed the best-predicted number.

Take one run when t=20 (which refers to the day that is 20 days before the departure date)

as an example, by calculating the total profit and final profit considering passengers’ No-show

probability, we can get the relationship between predicted profit and amount of sold tickets.

Figure 4.8: Total & Final Profit (BC) When
t=20

Figure 4.9: Total & Final Profit (EC) When
t=20

Thus, we can get from the picture that, overall, the total profit has a linear relationship

with the sold tickets, but there is a turning point for Economic Class– When there are more

sold tickets, airline companies have to pay for DB and thus leads to the slightly decreasing

rate of the increase of the profit, which should be paid attention to.

Running the method, the result we obtain is that the best-predicted selling number for

Business Class is 0 while our predicted number of buying demand is 1, thus, we reject one

order for Business Class; for Economic Class, we have the best predicted number as 25 and

the real buying demand is 8, thus, we accept all the orders.

For one-time simulation, by calculating for all t values, we can get the result as below:

The total profit followed by our constructed dynamic model is 1.996×105 Yuan, which

is 11% higher than the profit of 1.786×105 generated by the static model that the airline

company currently has. That indicates the feasibility of our model.



43

Figure 4.10: The Fourier Simulation of Plane Price

4.2 CODE ADJUSTED TO COVID-19

4.2.1 Influences on Plane Price

As we mentioned in background information, due to the outbreak of coVID-19, traffic

restrictions have been implemented in various regions, resulting in a significant decrease

in passengers and a rise in the vacancy rate of airlines, which has forced them to adopt

corresponding policies.Here, we extract the daily number of newly infected people in China

and the corresponding air ticket price of CA1831 on that day, and use MATLAB simulation

image to conclude that the two have an obvious inverse relationship.

The statistic value of this fitted curve is: SSE = 3.092×106,R−squar e = 0.4675,Ad j ustedR−
squar ei s0.4562 and RMSE = 256.5, which shows a relatively obvious significance of the

fitted line. That indicates that the Covid-19 does have significant negative influence on air

transportation. People’s not showing up and cancelling orders due to the spread disease

push the plane price down, since the decreasing market demand forces the market price to



44

Figure 4.11: The Estimated SIR Model of Covid-19

decrease as well.

The result also verifies our discussion in the previous chapter: the rapidly increasing

number of infected people gives rise to heightened security and adds fires to passengers’ fear,

which will increase the probability of showing up. To quantify the security and fear, we adopt

the hours that passengers have to spend going through the security (they need to scan the

health code, or check the body temperature) and the total number of infected people in the

region separately.

4.2.2 SIR model for COVID-19

As indicated above, SIR model can be applied to track the change of infectious population.

Early at the beginning of the spread, the total number of vulnerable groups is the to-

tal number of people, namely S = N , then we can simplify the infections, based on the



45

relationship between vulnerable group I and time t is:

d I

d t
=β

S

N
I −αI = (β−αI )

Thus, we can obtain the solution to this equation:

I (t ) = e(β−α)t

This relationship indicates that the approximate total number of infected persons is an

exponential function of time. The constant β and α should be determined according to the

characteristics of the outbreak, so that we can realize the estimation of infections. Meanwhile,

the epidemic prevention and control measures also affect these parameters and in turn reflect

the effectiveness of prevention and control measures. These parameters are generally based

on epidemiological statistics and will be reflected in the course of the epidemic. That is, we

can also determine these parameters based on actual outbreak reports.

Since we have accumulated some real epidemic data, retrospective fitting based on SIR

analysis can accurately determine these parameters.

First, using the CTFtools in MATLAB to do the least-square simulation of equation (4.1)

based on early public data yielded initial parameter estimates of β = 0.0000003 and α =
0.0077266. Using these parameters and equation, we found that the actual number of early

infections and estimates were very consistent.

From the obtained data we can see that the model can fit the number of infected per-

sons very well at the beginning of the spread process, since after a set of days there will be

much more external factors forcing on the real number, such as the government’s newly

implemented policies or the increasing power of people’s immune system and their corre-

sponding precaution strategies. Thus the specific values of α and β varies along with time.

Here for convenience, we just use the result we get by simulating the early stage of disease
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Figure 4.12: The Estimated SIR Model of Covid-19

spread to predict the whole process (Taking the assumption that Beijing and Shanghai are

isolated islands) and classify the corresponding number into different level set to give a vivid

illustration of passengers’ fear.

Following the strategies we have introduced in the previous chapter, we can get the

corresponding pn , namely the probability of passengers’ not showing up, for each period.

Since we are in the fourth period now, we then run out the dynamic model and generate the

expectation of air companies’ profit which is shown below. From this we can get that the final

profit has a positive linear relationship with the expected number of ticket orders.

Figure 4.13: Total & Final Profit (BC) When
t=20

Figure 4.14: Total & Final Profit (EC) When
t=20
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That indicates that, even the airplane reaches the maximum limit of ticket orders set by

the government regulations, the expectation of showing-up passengers can not fulfill the

total seats, thus leads to the linear relationship of total profits. Thus, to boost the profit, here

we suggest the airline companies should increase the maximum limit of ticket orders to avoid

loss of the potential benefits. We can verify the model by generating the data set of the result

of our dynamic model as well.

Figure 4.15: The Dynamic Model Running under Covid-19

Therefore, we can conclude that due to the impact of COVID-19, the no-show probability

of passengers has been significantly increased. Even if the airline sells the maximum number

of advance sale tickets stipulated in its policy, the passengers finally cannot make the plane

full, which also confirms the phenomenon of increasing the vacancy rate of flights in reality.

In the fitted dynamic model equation shown above, we can see that the corresponding

optimal predicted tickets per day are significantly increased,indicating that to obtain the

maximum profit, the most effective measure that airlines should take is, to increase the

maximum pre-sale tickets in the airline regulations, such that they can make the aircraft

as full as possible. However, considering personal safety under the influence of COVID-19,

the demand of passengers stays low and will not increase correspondingly to the increase of

maximum. Thus, we can obtain the converse direction, airline companies should reduce the

size of the aircraft to boost the efficiency of transportation.

Besides, notice that when passengers’ no-show possibility increases, the result of our

dynamic model tends to be consistent with the static model that the airplane has adopted.

That shed lights on the application range of our model– it performs better when passengers’



48

no-show possibility remains relatively low, or the demand for the tickets turns out to be

relatively high, that means, when there is a "need" to decide whether we should oversell,

instead of this case, that the passengers will not fulfill the plane with high no-show probability

and low demand for travelling. In a word, the model is used to decide "how to oversell" rather

than "whether to oversell".

Thus, we then assume that the airline companies have adopted the airplane with a smaller

size, with the capacity of 80 for EC and 20 for BC (Here we assume that the airline company

has replaced CA1831 with a new one, other variables being same). By running MATLAB, we

can get the following optimal result:

Figure 4.16: The Dynamic Model Running under Covid-19 for Smaller Aircraft

With reference to the previous method we have stated before, we calculated the total

revenue for the outcome of our dynamic model and the static model, discovering that the total

profit is approximately 7% higher than the static one. Thus, we can get to the conclusion that,

our dynamic model does works for different situations with various parameters, both under
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normal condition and COVID-19 condition, when there needs the decision on "overselling"

strategies.



Chapter 5

Discussion & Conclusion

5.1 CONCLUSION

In conclusion, we generate a dynamic model which offers the suggested selling number

of tickets for airline companies considering the overbooking strategy. Combining the Monto-

Carlo simulation for plane price and the basic Price-Demand Curve in Economics, we give a

prediction of ticket orders for each day and generate the optimal result that maximizes the

companies’ profit. Under normal situations, our dynamic model will generate 11% higher

profit than the static model which does not consider the overbooking amount on each day.

In the real context, the airline could follow the model to determine the tickets selling strategy

on each day in the pre-sale period.

The constructed dynamic model decides "how to oversell" instead of "whether to over-

sell". That explains its similar performance to the static model when considering COVID-19

epidemic with an increase in passengers’ no-show probability. Further, the result also shed

lights on a possible strategy would be to use smaller planes to carry flight tasks to make more

orders than the plane’s capacity, since increasing the maximum overselling ticket amount will

not better the situation. In that case, we obtain that the dynamic model would perform better

than the static model as well with approximately 7% increase in total profit. That verifies the

50
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validity in different situations of the dynamic model, which will have certain significance

of reference for the overbooking strategy adopted by airlines in the future whether under

normal or unnatural conditions.

5.2 DISCUSSION

5.2.1 Advantages

Dynamic Overbooking Model:

• Compared with static model which only provides an overbooking limit without detailed

strategy for ticket sales on each day, this model instead gives thorough sales strategy

with total ticket selling amount and prices on each day to maximize the revenue.

• To better describe the real ticket price fluctuations, the model applies statistical data to

predict price changes to better determine the ticket selling strategy.

• The model considers consumers’ behaviors as well. Using basic demand curve in

economy principle, it can reflect real market demand changes with respect to ticket

price changes.

AHP Model:

• It is a systematic analysis method. It does not cut off the influence of each factor on the

result. The weight setting of each layer in AHP will directly or indirectly affect the result,

and the influence degree of each factor in each level on the result is quantitative and

clear. This method can be used especially for the system evaluation without structural

characteristics and multi-objective, multi criteria, multi period and so on.
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• The combination of qualitative method and quantitative method makes the complex

system decompose. It can make people’s thinking process mathematically and system-

atized, which is easy for people to accept.

• Less quantitative data is needed. AHP is mainly based on the evaluator’s understanding

of the nature and elements of the evaluation problem, which is more demanding than

the general quantitative method.

5.2.2 Disadvantages

Dynamic Overbooking Model:

• Due to the limitation of our computation capacity, we could not simulate multiple

flights in different routes for an airline company at the same time.

• Currently on each day, we use the ticket price on that day to compute the revenue

expectation after that day. While in real case, ticket prices tend to be higher when the

flight is close to departure. However, as we use overbooking amount as the dynamic

parameter in our model, it would be much harder to consider prices as dynamic.

AHP Model:

• It can not provide new solutions for decision-making. The function of AHP is to select

the better one from the alternatives, so it will be fixed by the alternatives.

• Less quantitative data and more qualitative components make it difficult to be convinc-

ing.

5.2.3 Improvement directions:

Dynamic Overbooking Model:
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• To better compare with normal situations, we use the same Poisson process parameter

λ, λs to describe the demands of passengers in COVID-19 case. However, in the real

settings, COVID-19 would decrease the passengers’ demands to travel by plane. Thus

an individual Poisson process parameter could be applied to characterize the COVID-19

airline situations better.

• Under COVID-19 situation, currently it is a little arbitrary to determine the maximum

overbooking limit for airline companies to maximize the revenue. We could construct a

relation between no-show probability and maximum overbooking rate on each day.

AHP Model:

• Find the method of quantitative reference value or look for quantitative statistical data.

• More accurate screening of the parameters involved, discarding the parameters with

less relevance to the target. Consider other potential target related parameters.

SIR Model:

In the chapter on Application, we use a simple SIR model to simulate the infection

situation in Beijing and Shanghai. Thus, we automatically assumed that Beijing and Shanghai

meet the basic conditions of the SIR model, that is, both of them are "isolated islands" without

any interference from external factors. Therefore, the values of and are applicable in the early

stage of virus transmission, but in the middle and late stages of virus transmission, the SIR

model based on this parameter cannot accurately predict the actual number of infections

due to the interference of other external factors. Therefore, in the process of improving the

model, we can consider more variables, such as the prevalence of secondary infections, or

adjust the value of and in real-time, which makes the actual prediction more accurate.
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